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Clonal disorders of hematopoiesis, such as myelodys-
plastic syndromes (MDS) and myeloproliferative
diseases (MPD), affect both hematopoietic stem cells
and progenitor cells within the erythroid, platelet and
granulocytic lineages and can have devastating
consequences in children and adults. The genetic
features of these diseases often include clonal,
nonrandom chromosomal deletions (e.g., 7q–, 5q–,
20q–, 6q–, 11q– and 13q–) that appear to inactivate
tumor suppressor genes required for the normal
development of myeloid cells (reviewed in Bench 1 and
Fenaux 2). These putative tumor suppressors have
proved to be much more difficult to identify than
oncogenes activated by chromosomal translocations,
the other major class of chromosomal lesions in MDS
and MPD.3 Although MDS and MPD are almost cer-
tainly caused by mutations in stem/progenitor cells, 4

the role of inactivated tumor suppressor genes in this
process remains poorly understood. In a small portion
of myeloid diseases, mutations have been identified in
genes encoding factors known to be required for

normal hematopoiesis, such as PU.1, RUNX1,
CTNNA1 (ααααα-catenin) and c/EBPααααα, and implicating
these genes as tumor suppressors. 5-7 Nonetheless,
the identities of most deletion-associated tumor
suppressors in these diseases remains elusive,
despite complete sequencing of the human genome.
The deleted regions detected by cytogenetic methods
are generally very large, containing many hundreds of
genes, thus making it hard to locate the critical
affected gene or genes. It is also unclear whether
dysfunctional myelopoiesis results from
haploinsufficiency, associated with the deletion of one
allele, or from homozygous inactivation due to addi-
tional point mutations or microdeletions of the retained
wild-type allele. In general MDS have proved surpris-
ingly resistant to conventional treatments. Targeted
therapeutic advances in MDS will likely depend on a
full comprehension of underlying molecular mecha-
nisms, in particular the tumor suppressor genes lost
through clonal, nonrandom chromosomal deletions,
such as the 7q– and (del)5q.

Myelodysplastic syndrome (MDS) refers to a group of clonal
disorders characterized by trilineage defects in hematopoie-
sis, including the erythrocytic, granulocytic, and mega-
karyocytic lineages. Although clonal, it is sometimes con-
sidered a premalignant condition that often progresses to
acute myeloid leukemia (AML), when additional genetic
abnormalities are acquired.8-10 Overall, MDS affects ap-
proximately 1 in 500 persons over 60 years of age, making
it the most common hematologic malignancy in this age
group;11 it may develop at any age, including childhood.

As a complication associated with aggressive treatment of
other cancers, MDS shows a high correlation with expo-
sure to radiation, alkylating agents or topoisomerase II in-
hibitors.12-17 MDS often develops following autologous
bone marrow transplantation, affecting 20% of patients with
non-Hodgkin lymphomas who received bone marrow trans-
plants.13,15,18,19 The prognosis for patients with primary or
secondary MDS remains poor, especially in the elderly.
MDS usually requires allogeneic bone marrow transplan-
tation for permanent cure, but unfortunately, older patients
cannot generally tolerate this procedure, leaving them with-
out effective alternatives. In a study of adult patients with
primary MDS, only 6% were alive and in remission 7 years
after diagnosis.20 Children with MDS who undergo bone
marrow transplantation have a 58% survival rate after 3
years, as compared with an average survival of only 0.9
years for those who do not receive a transplant.21 These
bleak statistics underscore the importance of understand-
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ing MDS at the molecular level in order to expand the
repertoire of biologically based therapies. Improvement in
the treatment of acute promyelocytic leukemia (M3 sub-
type), using all-trans-retinoic acid to induce differentia-
tion of malignant promyeloblasts, illustrates the potential
of such strategies.22-24

Although MDS has been recognized as an important
disease for more than 50 years, its molecular pathogenesis
and the molecular basis for its progression to AML remain
largely undefined. A model of MDS molecular pathogen-
esis has been proposed whereby a normal hematopoietic
stem cell acquires successive genetic abnormalities that
ultimately lead to malignant transformation and clonal ex-
pansion. Evidence for clonality in MDS comes primarily
from nonrandom X-inactivation studies performed on the
bone marrow cells of female patients with MDS. These stud-
ies demonstrate clonal involvement of hematopoietic cells
in this disorder. Early mutations in stem cells may cause
differentiation arrest leading to dysplasia, whereas subse-
quent defects affecting myeloid cell proliferation may cause
the clonal expansion of aberrant cells and frank AML. Al-
though many chromosomal abnormalities have been de-
tected in MDS (e.g., 5q– and monosomy 7), the genes in-
volved are yet to be identified, and it is unknown whether
these genetic aberrations are initial events leading to the
development of MDS or are secondary events.

Myeloproliferative disorders (MPD), such as chronic
myeloid leukemia (CML) and myeloid metaplasia with my-
elofibrosis (MMM), are hematopoietic stem cell diseases
characterized by uncontrolled growth of granulocytes and
other hematopoietic cells, resulting in clonal expansion of
those lineages. A role for mutationally activated tyrosine
kinase genes has now been established in most cases with
MPD (Figure 1; see Color Figures, page 552). Recently,
following earlier discoveries of mutant tyrosine kinases in
CML, chronic myelomonocytic leukemia, hypereosino-
philic syndrome and systemic mast cell disease, four groups
reported a specific activating mutation in the tyrosine ki-
nase JAK2 in three distinct forms of MPD—polycythemia
rubra vera (PRV), essential thrombocythemia (ET), and
MMM. 4,25-27 Despite these advances in the identification of
tyrosine kinase oncogenes, it has been difficult to identify
the tumor suppressors whose inactivation contributes to
the pathogenesis of MPD and the chromosomal regions of
deletion are often shared between MDS and MPD (Figure
1; see Color Figures, page 552). Patients with neurofibro-
matosis type I, with inactivation of the neurofibromin 1
(NF1) tumor-suppressor gene, frequently develop juvenile
myelomonocytic leukemia (JMML); however, the onset of
this and other types of MPD is commonly associated with
complex karyotypes indicating the involvement of addi-
tional genetic pathways in the pathogenesis of MPD.28

Clearly, a major advance in the fields of MDS and MPD
will be made by the identification of additional mutations
involved in the development and progression of these fami-
lies of diseases.

Chromosomal Loss and Malignant Progression
in Human Myeloid Diseases
Based on cytogenetic findings, MDS and AML can be
broadly subdivided into cases with (i) normal karyotypes,
(ii) balanced chromosomal aberrations leading to the gen-
eration of fusion oncogenes and (iii) complex karyotypes
(more than 3 chromosomal aberrations). Complex chromo-
somal aberrations (CCAs) are associated with the most un-
favorable prognosis among subtypes of MDS and AML,
and MDS cases with a complex karyotype have a high pro-
pensity to evolve to AML. Despite intensive treatment in-
cluding allogeneic stem cell transplantation, long-term re-
missions are achieved in less than 10% of patients with
CCAs.29 The frequency of CCAs is remarkably high: 20%
of de novo AMLs, 30% of de novo MDSs, 24% of second-
ary AMLs and up to 50% of therapy-related AML and MDS
cases.30,31 The lower frequency of CCAs in de novo AML
reflects the higher prevalence of classic translocation-gen-
erated oncogenes (e.g., AML1-ETO, PML-RARα and many
others) in this disease compared with their paucity in MDS.3

Thus, myeloid leukemias and myelodysplastic syndromes
with CCAs constitute important clinical entities in need of
improved therapeutic strategies.

Cytogenetic studies have revealed both balanced chro-
mosomal abnormalities leading to the generation of fusion
oncogenes and unbalanced recurrent aberrations, most com-
monly –5, 5q–, –7, 7q–, +8, 11q–, 13q– and 20q–,1,2 suggest-
ing that genes within these regions have a role in MDS/MPD
pathogenesis (Figure 1; see Color Figures, page 552). Find-
ing the genes affected by such deletions poses a major inves-
tigative challenge, but will be necessary to accelerate progress
in research and treatment of these myeloid diseases.

Clonal chromosomal abnormalities are observed in
bone marrow cells from 30% to 50% of de novo MDS cases
and 80% of secondary MDS patients. The predominant ab-
normalities discovered in MDS are nonrandom chromo-
somal deletions, suggesting a pathogenic mechanism based
on loss of tumor suppressor genes or haploinsufficiency of
genes necessary for normal myelopoiesis. Common cyto-
genetic abnormalities in MDS include loss of chromosome
7 or partial deletions of chromosome arms 5q, 20q, 11q, or
7q. In addition, juvenile chronic myelomonocytic leuke-
mia often involves monosomy 7, together with mutations
of the NF1 gene.28 In a study of 1663 cases of MDS, 1098
(66%) had a single chromosomal abnormality, 237 (22%)
were monosomic for chromosome 7, and 431 (39%) had a
partial deletion of chromosome 5. Other abnormalities in-
cluded chromosomes 6, 9, 11, 12, 13, and 17. Importantly,
most of these genetic abnormalities correlate with progno-
sis. After intensive chemotherapy, 60% of patients with an
apparently normal karyotype entered complete remission
(average duration, 16 months), while patients with chro-
mosome 5 or 7 deletions or complex chromosomal abnor-
malities had a 20% remission rate (average duration, 4 to 5
months). Similarly, secondary MDS usually displays mono-
somies of chromosome 5 or 7 or partial deletions involving
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5q or 7q, with chromosome 7 defects associated with de-
creased survival time.13

Although the majority of putative tumor suppressors
in MDS have not been cloned, many chromosomal translo-
cation-mediated oncogenes (see Figure 1 [in Color Fig-
ures, page 552] reviewed in Look3) and a few of the tumor
suppressors have been identified. For example, genes inac-
tivated in MDS comprise a relatively small number of cases
and include P53, RB, WT-1, NF1, AML1, C/EBPα, α-catenin
(CTNNA1) and nucleophosmin (NPM) (reviewed in Tenen6

and Side28). However, only two of these genes (P53 and
CTNNA1) lie within the clinically prominent chromosomal
deletions in MDS or MPD, suggesting that many of the
principal tumor suppressors responsible for these myeloid
diseases have yet to be identified.

MLL Amplification in MDS
In contrast to AMLs harboring oncogenic transcription fac-
tor fusions, hardly any oncogene activation has been as-
signed specifically to MDS and AML with CCAs. One ex-
ception is the 11q23 region and its resident MLL gene,
which is amplified in a significant fraction of MDS and
AML with karyotypic complexity and an adverse progno-
sis.32-35 MLL has long been recognized as an important com-
ponent of translocation-generated fusion proteins. In con-
trast to other oncogenic fusion proteins, MLL participates
in translocations with more than 40 different partner chro-
mosomal loci. Homodimerization of the chimeric proteins
appears to underlie the promiscuity of MLL in its ability to
combine with many fusion partners, at least for a subset of
its productive fusions.36

The new studies mentioned above suggested that am-
plification of MLL represents a new mechanism of onco-
genic activation of this gene. A recent study confirmed the
importance of MLL within the 11q23 amplicon by analy-
sis of MLL target genes like HOXA9 and MEIS1.37 It has
long been recognized that HOXA9 is one of the important
target genes of MLL and recent reports from several inde-
pendent laboratories, including ours, provide a compre-
hensive view of other HOX genes that may be inappropri-
ately activated in leukemias with MLL rearrangements.38,39

Very recently, Hoxa7 and Hoxa9 were shown to be essen-
tial for MLL-dependent leukemogenesis in vivo.40

Thus, aberrant MLL activation in MDS/AML and con-
sequent dysregulation of its downstream targets are of clini-
cal importance. Indeed, the remarkable synergy between
MLL gene amplification and loss of 5q in MDS and AML
are reported to result in an extremely poor overall survival
rate of 30 days.35 Moreover, these data provide an impor-
tant clue regarding the mechanism of disease evolution. It
should be stressed that the impact of dysregulated MLL
and HOX gene activation is likely to extend beyond the
subgroup of patients with CCAs, as MLL and HOXA9 were
also significantly upregulated in unselected MDS patient
samples, including those with normal karyotypes.37

HOX Genes: Multiple Roles in Development,
Hematopoiesis and Leukemogenesis
Homeobox genes were first recognized through the analy-
sis of homeotic mutations of Drosophila, which alter the
identity of various body segments. Homologous genes have
been found in virtually every species, from yeast to hu-
mans. Class I homeobox genes are designated as HOX genes
in humans (mouse:hox genes). HOX genes control morpho-
genesis in early stages of embryonic development. The
specific shape of discrete segments (pattern formation) is
decisively regulated by these genes. Beside their role as
differentiation factors in embryonic development, the con-
trol of hematopoiesis by HOX genes is well established.
Since the perturbation of hematopoietic stem cell develop-
ment is a hallmark of leukemia, it is not surprising that the
aberrant expression of HOX genes contributes decisively
to leukemia pathogenesis.41

Early experimental evidence suggesting the oncogenic
potential of the HOX gene family came from studies show-
ing that the overexpression of Hoxb8 and IL-3 in murine
bone marrow cells can induce aggressive, transplantable
leukemia. A similar approach showed that Hoxa9 and
Hoxa10 are able to induce AML in mice. Retroviral inser-
tional mutagenesis has likewise implicated the Hox genes
in leukemia induction. For example, Hoxa7 and Hoxa9
were activated in the context of retrovirally induced AML
in BXH-2 mice. The importance of Hoxa7, Hoxa9 and the
cofactor Meis1 in the BXH-2 mouse leukemia model was
impressively underscored by a study based on large scale
cloning of proviral integration sites.

Further compelling evidence of the oncogenic poten-
tial of HOX genes comes from their direct or indirect in-
volvement in leukemia-associated translocations, such as
the translocation t(7;11)(p15;p15), which generates the
fusion protein NUP98-HOXA9 in AML patients. Additional
translocations involving HOX loci have been identified
over the past years.42,43 As pointed out above, MLL translo-
cations (6%-7% of all acute leukemia) and most likely also
MLL amplifications lead likewise to a dysregulation of
HOX gene expression. Very recently CDX4 was shown to
regulate expression of HOXA7 and HOXA9.44 Thus, this
homeobox transcription factor and it’s relative CDX2 are
attractive candidates for unidentified upstream regulators
of HOX gene expression in leukemia. Taken together, pub-
lished reports leave little doubt that specific HOX genes,
particularly HOXA7, HOXA9 and HOXA10, are involved in
the pathogenesis of AML and MDS, but virtually nothing
is known about the downstream pathways through which
these genes exert their oncogenic potential.
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